
AD-A266 462

Replication-Based Incremental
Copying Collection

Scott Nettles James O'Toole" David Pierce
Nicholas Haines

April 1993

CMU-CS-93-135

School of Computer Science O TIC
Carnegie Mellon University L TIE

Pittsburgh, PA 15213 ELECTE

t Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139 E

Also appears in Proceedings of the SIGPLAN International Workshop on Memory Man-
agement

,ýSRJb-ý-.4STAU&Aaa

lftpovedforpublic

This research was sponsored by the Avionics Lab, Wright Research and Development Center, Aeronautical
Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-
90-C-1465, Arpa Order No. 7597 and by the Air Force Systems Command and the Defense Advanced
Research Projects Agency (DARPA) under Contract F19628-91-C-0168.
The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

93-15191

Keywords: replication, garbage collection, incremental garbage collection, concurrent
garbage collection, real-time garbage collection

Abstract

We introduce a new replication-based copying garbage collection technique. We have imple-
mented one simple variation of this method to provide incremental garbage collection on
stock hardware with no special operating system or virtual memory support. The perfor-
mance of the prototype implementation is excellent: major garbage collection pauses are
completely eliminated with only a slight increase in minor collection pause time.-.

Unlike the standard copying algorithm, the replication-based method does not destroy t he
original replica when a copy is created. Instead, multiple copies may exist, and various

standard strategies for maintaining consistency may be applied. In our implementation for
Standard ML of New Jersey, the mutator continues to use the from-space replicas until the
collector has achieved a consistent replica of all live data in to-spacc.

We present a design for a concurrent garbage collector using the replication-based tech-
nique. We also expect replication-based gc methods to be useful in providing services for

persistence and distribution, and briefly discuss these possibilities.

Accesion For

NTIS CRA&I
DTIC TAB El
Unannounced 0

Justi ficatio - -.

DTIC QUAL yBy............................

C Q iT nSCTED 5Distribution !

Availability Codes

Avail and I or
Dist Special

1 Introduction

Copying garbage collection (GC) is an important memory management technique. but its
application has been largely limited to situations that can tolerate (C pauses. There haw,
been numerous schemes for incremental or concurrent copying collectors that are -real
time," i.e. that limit GC pauses to small bounded intervals. Real-time collectors interleave
garbage collection with program execution, thus spreading out the copying work so that
the individual interruptions are unobtrusive. These incremental collectors fall into on(e of
two groups: those that require special hardware [61. and those that use virtual meniory
protection [2].

The disadvantage of techniques which use special hardware is that they are not portables.
Techniques which use other operating system support such as the ability to control the
virtual memory system are often not portable, and can be prohibitively costly vdue to the
cost of trap handling or similar operations. We propose a new technique for implementing
incremental and concurrent copying collectors that requires no special support from either
hardware or operating system. In addition. it promises to be useful for other algorithms
that use copying to provide features such as persistent data and distributed computing.

We first introduce our general approach, based on nondestructive copying or replicat ion.

Next we outline our experimental implementation and present preliminary pei'frmance
measurements which demonstrate its excellent real-time behavior. Finally we discuss the
application of the replication-based technique to concurrent collection. and suggest other
applications.

2 The General Method

Copying collection works by copying all of the valid data from one region (from-space) to
another (to-space). leaving the garbage behind. We assume the reader is familiar with th,,
basic technique of copying collection as well as the notion of generational collection. The
key operations of copying collection are as follows:

"* Copy an object from from-space into to-space, leaving a forwarding pointer in the
original from-space object.

"* Forward a from-space pointer into to-space. if necessary copying the object it refer-
ences, and redirecting the pointer to the to-space copy.

"* Scan a to-space object, forwarding all of the object's pointers.

The mutator caii perform the following operations on objects: read a field, write a
field, and compare pointers for equality. Increnic.ta! GC requires that these operations be
interleavable with the operations of the garbage collector outlined above. iConcii reitt CC
has much stricter requirements, discussed in section 5 below.)

Since the standard copying technique overwrites from-space objects with forwardine
pointers in the Copy operation, liobt incremeaital collectors require brnat the mutator use

I

only the to-space copy of an object. To maintain this invariant, the collection algorithm
must rely on low-level hardware support. (E.g. hardware support for following forwarding
pointers or trapping all attempts to access the tinscanned portions of to-space.)

In contrast, our technique simply replicates the from-space object in to-space. A for,
warding pointer is placed in a special word reserved at the head of the from-space objeyct,

Since the original object is not destroyed by the copying operation. any use of the object
may continue to reference the original object. However, because multiple copies of an object
may exist, read and write operations must adhere to one of several consistency protoco,.

If reads are permitted to access either copy. write operations must modify bot 11 t,)-paco
and from-space replicas. Also, pointer-based equality tests must follow the forwarding
pointers in order to ensure that only to-space (or only from-space) pointers are compared.
In more sophisticated systems, where copying is used for purposes other than GC and there
may be more than two replicas of an object. the mutator must modify all replicas (for
this purpose we can make the forwarding chain circular by having a 'reversing pointer' in
the newest replica). In this system, read operations can be freely interleaved with any ,of
the GC operations. but under some consistency protocols the write operations may rV(Plirr,
synchronization with the collector, and care may be required to ensure that the mutator
& es not write from-space pointers into previously scanned to-space replicas.

This general protocol of reading any copy and writing all copies is a standard one used
for maintaining replicated data, so we use the term "replication-based copying". .\Aother
possibility is to have write operations modify only the newest version of an object. in
which case the read operations for mutable objects must always read the newest version. In
section 5, we discuss this possibility, which may be preferable for concurrent applications.

Note that these operations are distinct from that of updating the -root set'. that set of
pointers directly visible to the mutator (registers, the stack. etc.). At some point in the
GC process. these pointers must be updated. In a standard incremental collector. this is
done immediately after the 'flip' by a simple 'forward' operation to start the (,(*. With a
replication-based algorithm, it is possible to delay this step until just before the flip. aftr
copying all live data into to-space. By using this technique. the collector can onsure that
the mutator uses only from-space objects. In this case, there is no need for t he collector to
synchronize with the mutator except very briefly at flip time. Notice that this variation is

not fully general, as it does not provide for more sophisticated uses of copying.
The advantage of the above technique is that it allows for incremental collection with

no special hardware or OS support, but what are the disadvantages? First. it requires one
extra word per object for the forwarding pointer. Fortunately. this extra word caii often
be absorbed into other object header words which are already present. The second disad-
vantage is that the consistency protocol may make writes (and possibly reads of mutable
objects) more expensive. For some languages this would be unsatisfactory because muta-
tions are common. However, for applicative languages like SML. in which side effects are
less frequent and mutable objects are clearly distinguished by a. type system. this runtime
cost ;-,probably not a problem. Thc thi-dr d c-van.gc is thtt of (.01)mir lat nt gatl;age,
but this is an inevitable cost of any incremental method, and all such garbage is discarded

2

by the next collection. The final disadvantage is that tests of pointer equality becolie more
expensive. This may be a serious disadvantage for Lisp family languages witere the use of
eq is common. It is probably less important for SM'_. because equality testing is already
expensive, and not as frequently used.

3 Implementation

We have built a prototype implementation of a replication-based incremental collector for
SML/NJ (version 66). In order to quickly test the utility of the replication-based method.
we chose to implement a simple variation of the general replication algorithm. In this
variation, the mutator uses only the from-space replicas. Therefore, the mutator need not
adhere to a consistency protocol. and so only one small change to the SML/N.I compiler
was required. The rest of the implementation work required modifications to the standard
SML/NJ garbage collector.

SML/NJ uses a simple generational copying collector [1], with two generations known
as new-space and old-space. The new-space is used for newly allocated data. and the old-
space contains data which has survived at least one collection. When the new-space fills.
a 'minor' collection is performed, copying data from the new-space to the old-space. The
compiler keeps a record (the 'store list') of all writes to mutable objects so that references
from the old-space into the new-space can be found during minor collection. When the
old-space fills, a 'major' copying collection is performed. Minor collections are typically
short and non-disruptive. but major collections are often lengthy.

Our implementation leaves minor collections a~s they are. but makes the major collect ions
incremental, doing some portion of the major collection at each minor collection. There are
several reasons for this choice. First, it avoids having the allocator allocate the forwarding-
word; instead it is added when objects are copied from new to old. This avoids a change
to the compiler backend's allocation primitives. Second. since the GC is in control during
a minor collection. it is convenient and cheap to do incremental work at that tinme. BY
limiting the amount of incremental work done at each minor collection. we can keep pauses
brief, within a factor of, say, three times as long as for a minor collection alone.

We use the strategy, described above, of only updating tile root set when the ((C is
complete. The mutator can therefore only see from-space objects. We use the store list
during each GC increment to update to-space versions and rescan them if necessary. The
SML/NJ compiler version 66 keeps a log of all mutations which store pointers, for use, by the
generational collection algorithm. We modified the mutation log to include all mutations.
so that the incremental collector can update to-space. This avoided the need to modify the
compiler to add a write-all-replicas protocol.

In order to ensure that the garbage collector terminates, we must guarantee that all live
data will be replicated in to-space before frorn-space overflows with new data copied by the
minor collections. We want to restrict the amount of GC work done in each increment, hut
still ensure that a 'flip' takes place before from-space is full. Otherwise. when from-space
fills, the incremental collector will have to perform a large amount of remaining gc work.

3

#minor mean modal max. 90% #major mean max. I tcal

pauses pause pause pause below pauses pause pause I cC

F-
orig 5422 17ms 15ms 734ms 45ms 48 2.2s 5.0s 201s
incr 5422 57ms 46ms 499ms 93ms - 312S

Table 1: Pause timings for stop-and-copy vs. incremental collectors.

which will be tantamount to a major garbage collection pause.

In the prototype implementation, we guarantee that this will not happen by requiring
the incremental collector to copy more objects into to-space than were added to from-space
by the minor collection. Therefore. the duration of the incremental collector's pauses can bp
controlled by adjusting the size of the new-space and the amount of additional incremental
copying done.

4 Measurements

The initial performance measurements for our prototype implementation are shown in ta-
ble 1. The table describes the garbage collector pauses which occurred during a single test
case. The test case compiled a significant part of the SML/NJ compiler, and was run with-
out paging activity on a DECstation .5000/200 equipped with 64 Mb of main memory. The
incremental collector completely eliminates the major collection pauses of 2 to 5 seconds
with which every SML/NJ user is aggravatedly familiar.

The minor pauses measured for the original collector represent the delay caused by a
collection of old-space into new-space. The minor pause time for the incremental collector
includes the generational collection of old-space into new-space and also the work done
by the incremental algorithm transporting objects in the from-space (old-space) to theI
to-space.

The statistical distribution of the minor pause times are both unimodal. with pro-
nounced modes at at a pause time of less than 50ms, but with a long tail to several
hundred milliseconds. Our collector increases the mode. but its performance appears to
be interactive enough to remain acceptable to users.

The measured mean pause time for our collector is 57 milliseconds. We expect to
reduce that figure to 50ms or less by varying the control parameters of our implementation.
Reducing the size of the new-space and the fraction of incremental work done will shorten
these paiises. Because our collector is incremental, we can also cut short the incremental
collection activity if it becomes too lengthy.

The total garbage collection time is increased by more than 50% relative to version 66
of the SML/NJ. We anticipate being able to reduce this to approximately 10% by simple
optimizations of our existing code (we believe most of this increase is due to the fact that

#objects total overhead 1
copied size bytes % heap

all objects 27M 344Mb 108Mb 24%
mutable only 1.76M 18Mb 7Mb 2 %,

Table 2: Space overhead of forwarding words for incremental collector.

the prototype implementation performs a ýflip' operation twice as often as the standard
algorithm. There is no mutator time overhead in the current implementation.

Table 2 shows the total space overhead of our system. The total size measurements given

in the table do not include the overhead for forwarding words. and the percentage figure
measures the amount of overhead bytes as a percentage of the total heap size. including
overhead. The prototype implementation uses a separate forwarding word for every object.
which results in a very high space overhead of 24% because a majority of objects are two-
word records ('cons cells') with a header word. However. we can reduce the space overhead
by storing the forwarding pointer and the header information in the same word. In this
scheme, a replicated object has header information on only the newest copy. Any operation
which needs the header information must follow forwarding pointers to locate the newe's't
copy of the object. In the write-newest protocol. this optimization can be applied to all
objects, eliminating the space overhead entirely.

However, in the write-all consistency protocol, even the newest replicas of mutable
objects require 'backwarding pointers', so this optimization cannot be applied to them. In
this case the space overhead would be reduced to just 2% of the heap. as shown in the
table. Certain operations such as size would need to follow the forwarding pointer chain.
as well as other low-level run-time operations such as tag checks.

5 Concurrent Collection

The same technique is applicable to a concurrent system, in which the collector and the
mutator run in parallel, as separate threads of a single process. This is only an advantage
in multi-processor systems. when the collector may be running on one processor while the
mutator (or mutators) is running on the others-in single-processor systems one is merely
sacrificing control over when the collector runs. which is pointless.

In a concurrent system, not only must the semantic operations of the collector and
mutator be independent, as discussed above, but the individual machine instructions of
each must be interleavable. This is a much stronger condition, but it is not. hard to satisfy
in a concurrent version of the incremental collector described above.

First consider whether running our prototype incremental collector concurrently with
the mutator would produce read/write conflicts. The mutator only reads or writes from-

.5

space replicas. The collector reads from-space replicas, but writes only to-space replicas.
The collector also writes the forwarding words of from-space replicas, which the mutator
does not access. Thus the collector will not interfere with the inutator. If the forwarding
word and the header word are merged, then the collector and the mutator could conflict
while accessing this word. However. as long as the collector can atomically update the
header word to install the forwarding pointer, there is no danger. The mutator will either
read the from-space replica's header word before it is overwritten, or follow the forwarding
pointer to the to-space replica.

Now consider whether the mutator will interfere with the collector. It can only interfere
by writing a word the collector is reading. But at worst this would cause the collector to
copy the wrong value to to-space and at some point this mistake would be corrected in the
process of updating to-space to reflect mutator writes. Thus the mutator does not interfere
with the collector.

Almost all of the synchronization needed to make our prototype incremental collector
concurrent is already present in the incremental collector, because the effects of nmutator
stores are communicated to the collector indirectly through the store list. Implememting a
concurrent collector is simply a matter of managing the handoff of the current roots and the
store list. and synchronizing to forard the root pointer set when the collection terminates.

6 Related Works

Real-time incremental or concurrent garbage collection has been the goal of many research
projects in the past. Recent work includes that by Ellis. Li. and Appel [2]. which exemplifies
the use of the virtual-memory system to control the GC behavior, and Hlalstead [5]. using
hardware improvements. The first real-time copying collector, by Baker [3] requires special
hardware, and paved the way for many other such systems. Some existing algorithms work
on stock hardware without operating systems support, such as those by Brooks [.4] and later
North [8], but none of these show such small time and space overheads a-s our technique.

7 Future Work

Since the overhead for this new technique appears to be acceptable. we believe it will
be useful when applied to several other interesting GCC-related algorithms. These other
algorithms can all make use of copying to achieve some useful end other than collecting
garbage, and may be able to share some runtime and/or storage costs with the garbage
collector.

One such algorithm is used to implement persistent storage. One of us has implemented
a persistent storage system based on copying objects from the heap into a persistent heap
[7]. A major performance bottleneck is the need to scan the entire heap for pointers to
objects which have been copied. Nondestructive copying will eliminate this scan.

We are also interested in using copying to implement mechanisms for distributed comn-
puting, such as those required by object repositories. In these distributing computing

6

systems. data which will be replicated at a remote machine is copied into a inessage hutfvr.

linearizing it for transmission purpo,.es. Again nondestructive copying will great l% lessnil
the overhead of such copies. Also, we anticipate a simple interface between the local (,W
described here and the global (distributed) GC required in such a system.

A final possibility is the technique of delayed hash consing. Here the system tries to

detect if two (immutable) objects are identical. If they are then they can be merged. This

merge can be implemented by nondestructively adding a forwarding pointer from one object
to the other. This technique may greatly reduce the amount of heap space needed.

We are extending our implementation in these directions and exploring some ideas for
"-opportunistic" GC [91, in which the timing of garbage collections is chosen to minimize1

disruptiveness. We are investigating triggering (;(within the user-interaction loop. imute-
diately before prompting for input, and after long waits for input. As a start, we are adding
some very simple code to disable the incremental technique when the iuitator is compute-

bound, reverting to the more efficient stop-and-copy collection. the pauses of which will not
be noticed during the compute delay.

8 Conclusions

We have introduced a promising new copying GC technique. replication-based copying.

This technique is especially well suited to languages like SMIL where mutations are rare.
We have implemented a simple incremental GC for SML/NJ based on this technihuei and

have obtained preliminary data showing our idea to be workable. We are continuing work

to make related algorithms equally practical.

Acknowledgments

Scott Nettles and James O'Toole would like to thank DEC's Systems Research ('enter
for support as summer interns, during which time this idea was originally conceived. Scott

Nettles and David Pierce would like to thank Peter Lee for smpport with the implementation.
Thanks also to John Reppy for his suggestion to merge the forwarding pointer and header
word. Greg Morrisett provided many hours of helpful conversation. Thanks to Penny

Anderson. Mark Sheldon. Ellen Siegel and the Vonari group for proofreading.

47

References

[1] A. Appel. Simple generational garbage collection and fast allocation. Softwar - Practiw
and Experience, 19(2):171-183. February 1989.

[2] Andrew W. Appel. John R. Elis, and Kai Li. Real-time coitcurrent garbage collection
on stock multiprocessors. In SIGPLAN Symposium on Prrgramming Lan guage Defsign
and Implementation. pages 11-20. 1988.

[3] H. G. Baker. List processing in real time on a serial computer. C'ommunications of I&u
ACI. 21(4):280-294, 1978.

[4] Rodney A. Brooks. Trading data space for reduced time and code space in real-time
garbage collection. In SIGPLAN Symposium on LISP and Functional Programming.
pages 256-262, 1984.

[51 Robert H. Halstead, Jr. Implementation of multilisp: LISP on a multip-ocessor. In
A4(Symposium on LISP and Functional Programming. pages 9-17. 19•-1.

[6] David A. Moon. Garbage collection in a large lisp system. In Proceedings of flth 9X,.,
ACM Symposium on Lisp and Functional Programming. pages 235-216. AC(M. August
1984.

[7] Scott M. Nettles and J.M. Wing. Persistence + Undoabilitv = Transactions. Technical
Report CMU-CS-91-173. Carnegie Mellon University. August 1991.

[8] S. C. North and J.H. Reppy. Concurrent garbage collection on stock hardware. In Gilles
Kahn. editor, Functional Programming Languages and Computer .4rchithturI (L.VCS

"274), pages 113-133. Springer-Verlag. 1987.

[9] Paul R. Wilson and Thomas G. Moher. Design of the opportunistic garbage collector.
In Proceedings of ACM SIGPLA.V 1989 Confernrc on Object-Oriented Programiming:
Systems. Languages. and Applications. 1989.

